PRODUCT SUMMARY

The HL5897 is an ultrabroadband, linear amplifier that demonstrates exceptional gain flatness over a typical bandwidth of 48 kHz to 63 GHz.

This amplifier is optimized as a data driver to amplify signals with a minimum amount of eye distortion. This is ideal for use as a linear gain block in applications such as fiber optic receiver channels or 112 Gbps PAM4 signaling.

Only a single 6 V supply is needed for operation.

APPLICATIONS

Optical Communications
Satellite Communications
Data Signaling
High-Speed Pulses
Analog Signals
Antenna Measurements
Research & Develpment

S-PARAMETERS

S-parameters files are available on our website.

AVAILABLE OPTIONS

The following options and configurations are available for this product:

- **-10**, 1.0 mm connectors
- -18, 1.85 mm connectors
- -PP, plug in & out
- -PJ, plug in, jack out
- -JJ, jack in & out
- -JP, jack in, plug out

HL5897 Ultra-Broadband Linear Amplifier (63 GHz)

Key Features and Technical Specifications

Bandwidth (3 dB)	48 kHz to 63 GHz
Small Signal Gain	14 dB
Return Loss	10 dB, input 10 dB, output
P _{in max}	15 dBm (damage threshold)
P1dB (24 GHz))	16.5 dBm
Power Supply	+6 V @ 0.18 A
Power Consumption	1.1 W typical
Dimensions (L x H x D)	41.5 x 27.0 x 10.0 mm (opt18-JP) 1.63" x 1.06" x 0.40"
Weight	25 g (0.88 oz)
Operating Temp. Storage Temp.	0° to +50° C, case temp -40° to +50° C, case temp
RoHS Compliant	Yes, assembled with lead-free solder
REACH Compliant	Yes
Warranty	1 year, see website

HL5897, option -18-JP drawing shown

Eye diagram of HL5987 driving 9.5" coaxial cable at 112 Gbps

DEVICE PORT ASSIGNMENTS

For the purposes of this datasheet, the below port assignments are used.

HL5897 Full Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Comments
Upper 3 dB Frequency			63 GHz		3 dB roll-off point, relative to avg. gain from 35 MHz to 210 MHz
Lower 3 dB Frequency			48 kHz		3 dB roll-off point, relative to avg. gain from 35 MHz to 210 MHz
Small Signal Gain	P _{in} = -10 dBm	13 dB	14 dB		Avg from 35 MHz to 210 MHz
Return Loss, Input			10 dB		35 MHz < f < 65 GHz
Return Loss, Output			10 dB		35 MHz < f < 65 GHz
Group Delay			0.19 ns		
Input Referred Noise Voltage			0.15 mV		Integrated DC to 20 GHz broadband measurement
Max RF Input				15 dBm	Damage threshold
Max Power Out	1 dB gain compression		16.5 dBm		24 GHz
See note(1)	2 dB gain compression		17.5 dBm		24 GHz
	3 dB gain compression		18.3 dBm		24 GHz
Impedance			50 Ω		Input and output
Polarity	Inverting				
Coupling	AC, input and output				
Supply Voltage (+)		+5.8 V _{DC}	+6 V _{DC}	+7 V _{DC}	
Supply Current (+)			180 mA	200 mA	Do not exceed 200 mA operating limit max
Power Dissipation			1.1 W		
Gain Control Voltage		-10 V	+2 V	+3 V	Pin floats to +2 V
XP Control		-1V	+1.2 V	+6 V	Pin floats to +1.2 V

Table 1: Output Compression Table All output in dBm

Compression	100 MHz	6 GHz	12 GHz	24 GHz
1 dB	14.3	15.9	16.2	16.5
2 dB	15.7	17.0	17.9	17.5
3 dB	16.4	17.6	18.9	18.3

Note(1): Compression measurements made using Keysight U2002A Average Power Sensor

HL5897 Typical Performance Characteristics

The data presented in Figures 1 through 6 were obtained using a MICRAM DAC4 signal source and LeCroy SDA 100G Sampling Oscilloscope with 70GHz (SE-70) remote sampling module.

Fig. 1: 56 Gbps PRBS11 pattern on RF In. 60 mv/div

Fig. 2: 56 Gbps PRBS11 pattern on RF Out. 325 mv/div

Fig. 3: 80 Gbps PRBS7 pattern on RF In. 53 mv/div

Fig. 4: 80 Gbps PRBS7 pattern on RF Out. 280 mv/div

Fig. 5: 112 Gbps PAM4 pattern on RF In. 50 mv/div

Fig. 6: 112 Gbps PAM4 pattern on RF out. 280 mv/div

HL5897 Typical Performance Characteristics

Fig. 7: Typical Gain (dB) vs Linear Frequency (GHz)

Fig. 11: Typical Input Return Loss (dB) vs Frequency (GHz)

Fig. 8: Typical Gain (dB) vs Log Frequency (Hz)

HL5897 Typical Gain Control and Crossing Point (XP) Control Functions

The data presented in Figures 13 through 18 were obtained using a MICRAM DAC4 signal source and LeCroy SDA 100G Sampling Oscilloscope with 50GHz (SE-50) remote sampling module. All measurements were made at 270mV input eye amplitude and 51% input eye crossing point. Gain control and crossing control functions are dependent on input amplitude. Adjust both controls interactively to control output amplitude while maintaining 50% crossing point as shown in Figures 15 through 18.

Fig. 13: Gain Control Function with Crossing Control pin floating

Fig. 15: Interactive Control Example with constant 50% Crossing Pt

Fig. 17: Vgc=-7V, Vxp=3.7V, XP=50%, Eye Amplitude = 0.91V

Fig.14: Crossing Control Function with Gain Control pin floating

Fig. 16: Vgc=2V, Vxp=2.1V, XP=50%, Eye Amplitude=1.27V

Fig. 18: Vgc=-10V, Vxp=4.7V, XP=50%, Eye Amplitude = 0.46V

HL5897 Dimensional Drawing

Figure 1 shows a mechanical drawing of an HL5897, option -18-JP. Unless otherwise noted, all units are in mm.

Figure 1: HL5897 mechnical drawing (opt. -18-JP), mm